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Abstract

Most natural deformation involves simultaneous discrete deformation (e.g. faults) and distributed deformation (e.g. penetrative strain). In

order to properly understand the bulk kinematics of a given deformation, the discrete and distributed components must be evaluated

simultaneously. The displacement diagram method has previously been utilized to quantify strain accommodated by faults or other discrete

surfaces. The same method is applicable to distributed deformation, such as ductilely deformed conglomerates, which are typically evaluated

by finite strain analysis. By mathematically combining the gradients in the displacement fields of both the discrete and distributed

components of deformation, the bulk deformation can be quantified. We apply this method to several examples that contain both distributed

and discrete components, and characterize the bulk displacement field and finite strain for these deformed systems.
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1. Introduction

An inconvenient characteristic of naturally deformed

rocks is that they do not behave as idealized continua.

Rather, earth materials develop discontinuities via slip or

dissolution at the same time they experience bulk

penetrative strain. S–C structures are just one example of

this behavior (Fig. 1a). The shear surfaces (or C-bands)

accommodate slip (discrete deformation). The S-domains,

which lie between the shear surfaces, record penetrative

strain (distributed deformation). Therefore, both discrete

and distributed components must be evaluated to quantify

the bulk deformation.

The characterization of discrete vs. distributed defor-

mation depends on the scale of observation. The sign in

Fig. 1b, viewed from 5 m (the approximate distance from

which the photo was taken), is discretely deformed.

Viewed from 50 m, the same deformation appears

distributed. In the more complex S–C example, the
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shear surfaces appear as distributed deformation if

viewed at higher magnification.

One approach to evaluate deformation is displacement

field analysis, which has proved useful for many structural

studies (e.g. Wojtal, 1989; Marrett and Allmendinger, 1990;

Rouby et al., 1993; Little, 1996). This approach is typically

used to calculate finite strain in brittle fault (discrete)

systems (Wojtal, 1989). It is also possible to describe

distributed deformation in terms of displacements (Ramsay

and Huber, 1983, pp. 283–292). Consequently, the common

‘language’ of displacements can be used to analyze bulk

deformation involving both discrete and distributed com-

ponents. This approach works for deformation on all scales,

as strain is scale independent.

In this study, we first show how distributed deformation

is characterized using displacement diagrams. We then

demonstrate how discrete and distributed components of

deformation are combined to determine the bulk finite

strain. The method is applied to several examples: (1) a two-

dimensional example of a simple shear deformation, (2) a

one-dimensional example of centimeter-scale deformation

in carbonate, (3) a theoretical example of a bulk non-coaxial

deformation, and (4) three-dimensional deformation within

the San Andreas fault system.
Journal of Structural Geology 27 (2005) 1168–1189
www.elsevier.com/locate/jsg

http://www.elsevier.com/locate/jsg


Fig. 1. Examples of deformed systems. The characterization of a deformation as discrete or distributed depends on the scale of observation. (a)

Photomicrograph showing an S–C fabric in a sample from the Sandkraal sandstone formation, Kaaimaans inlier, near George, South Africa. Field of view

w4 mm. Elongate light-colored S domains, deforming in a distributed fashion are surrounded by dark C bands, which accommodate discrete slip. (b)

Photograph of a deformed road sign in Tremp, Spain. Deformation appears discrete when viewed from 5 m, but distributed when viewed from 50 m.
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2. Displacement diagrams

2.1. Displacement diagrams applied to discrete deformation

Within a deforming system, each material point moves

from an initial position to a final position during

deformation, defining a displacement vector. A displace-

ment field is determined by calculating displacement

vectors for a population of material points. Finite strain is

caused by gradients of the displacement field. Several

structural geology studies have utilized displacement field

analysis (e.g. Cobbold, 1977; Wojtal, 1989; Marrett and

Allmendinger, 1990; Rouby et al., 1993).

Displacement diagrams are one method of displacement

field analysis and have been utilized to analyze bulk

deformation accommodated by discrete structures (Wojtal,

1989; Little, 1996). A displacement diagram is a plot of

cumulative displacement against spatial position, measured in

an arbitrary coordinate system. Fig. 2a and b illustrates an

example of discrete deformation, similar to the deformation in

Fig. 1b. Fig. 2a shows the deformation of a box (dashed lines)

to a series offault blocks (solid lines).A displacement diagram

for this deformation is given in Fig. 2b, in which displacement

(U) is plotted against spatial position (y). The displacement in

the x direction (Ux) of three material points (labeled 1–3) plot

as individual points on this graph.The slope of the line through

these points is the displacement gradient. The deformation

matrixD, which describes the movement of material particles

from the undeformed to the deformed state (Fig. 2c), is directly

calculated from the displacement gradients. A general method

for calculation of finite strain from displacement diagrams is

given in Appendix A (for a more mathematically thorough

discussion, see Wojtal (1989)). Means (1976) provides an

excellent discussion of displacements, displacement gradients

and matrices composed of these quantities. Mathematical

symbols used throughout the paper are defined in Table 1.
Fig. 2d shows a deformation that is the exact reciprocal

of the deformation in Fig. 2a. In Fig. 2d, the fault blocks

define the initial state (dashed lines) and reciprocal

deformation restores the system to its undeformed geometry

(solid line). A displacement diagram describing this

deformation is shown in Fig. 2e, in which reciprocal

displacement (U 0) is plotted against spatial position (y 0). The

primes denote that the deformed state is the reference

configuration (i.e. we follow a reciprocal or Eulerian

approach—see Appendix B). Notice that, for this reciprocal

deformation, displacement is in the negative x 0 direction,

opposite that in Fig. 2b. The reciprocal displacement

gradient is one component of the reciprocal deformation

matrix E and, in this example, is responsible for the finite

strain of the system. As the displacement gradients are of the

same magnitude for both the forward and reciprocal

deformations, the finite strain magnitude is the same for

both deformations (Fig. 2a and d).
2.2. Displacement diagrams applied to distributed

deformation

Although displacement diagrams have previously been

used to analyze discrete deformation they can describe

distributed deformation equally well. The deformation

shown in Fig. 2f is the distributed equivalent of the

reciprocal discrete deformation shown in Fig. 2d. As in Fig.

2d, reciprocal displacement is plotted against spatial

position. However, rather than plotting as a series of

material points that correspond to different fault blocks, the

reciprocal displacement gradient plots as a continuous line

of displaced material points. The reciprocal displacement

gradients are the same for both the discrete and distributed

deformation (cf. Fig. 2e and g). Consequently, these two

deformations (Fig. 2d and f) have equivalent finite strains.



Fig. 2. Deformations and the corresponding displacement diagrams and deformation matrices. For the illustrations of the deformations ((a), (d) and (f)), the

dashed lines refer to the initial geometry and the solid lines to the final geometry. (a) Forward discrete deformation, and (b) the corresponding displacement

diagram that describes the deformation. In this case, cumulative displacement in the x direction is plotted against the y position. Points 1–3 (gray circles)

correspond to points in (a). The gray boxes describe cumulative displacement. The displacement gradient (dashed line) is calculated by considering cumulative

displacement over the entire length of the transect (black circle). (c) The deformation matrix D that mathematically describes (a). See Appendix A. (d)

Reciprocal discrete deformation, and (e) the corresponding reciprocal displacement diagram. In this case, cumulative displacement in the x 0 direction is plotted

against the y 0 position. Circles and displacement gradient are as in (b). (f) Reciprocal distributed deformation, and (g) the corresponding reciprocal

displacement diagram. Again, cumulative displacement in the x 0 direction is plotted against the y 0 position. The shaded region describes cumulative reciprocal

displacement. The displacement gradient is calculated by considering reciprocal cumulative displacement over the entire length of the transect. (h) The

reciprocal deformation matrix E that mathematically describes either (d) or (f). See Appendix A.
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2.3. Displacement diagrams and combined discrete and

distributed deformation

The displacement diagram method considers gradients in

displacement fields, rather than the fields themselves.

Consequently, complex displacement fields composed of

multiple component fields can be analyzed by summing
Table 1

Definitions of terminology

Mathematical notation

Ui Displacement in the i dir

j Spatial position on the j

Ui0 Reciprocal displacement

j 0 Spatial position on the j 0

vUi0 =vj0 Reciprocal displacement

D Deformation matrix

E Reciprocal deformation

G Displacement gradient m

H Reciprocal displacement

ki Stretch in the i direction

Wk Kinematic vorticity num
displacement gradients from the component fields. Note that

this simple summing is not possible for displacement fields

themselves, as the resultant displacement field depends on

the order in which the components occurred (e.g. simple

shear followed by pure shear vs. pure shear followed by

simple shear). Because it is possible to describe both the

discrete and distributed components of any deformation
ection (undeformed system as reference)

transect (undeformed system as reference)

in the i 0 direction (deformed system as reference)

transect (deformed system as reference)

gradient in the i 0 direction with respect to j 0 position

matrix

atrix

gradient matrix

ber
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with displacement fields, the displacement gradients of

these component fields can be summed to yield a cumulative

displacement gradient (Fig. 3). On a displacement diagram,

the component displacement gradients (i.e. the slopes of

lines) are added to yield the cumulative displacement

gradient.

Although the deformations in Fig. 3 are shown for both a

forward (Fig. 3a–e) and reciprocal (Fig. 3f–i) approach, we

will utilize the reciprocal approach for the remainder of the

manuscript. In general, the reciprocal approach is useful

because it allows kinematic information to be extracted

directly from naturally deformed rocks (Appendix B).
3. Two-dimensional example

We introduce the displacement diagram method using

the well-known example of simple shear in a stack of

computer cards (Fig. 4), which is kinematically identical to

the example given in Fig. 3. This simple example is worked
Fig. 3. Flow charts illustrating the difference between the forward and reciprocal a

(Lagrangian) perspective, we (a) start with a deformation matrix, and (b) partition

are, (c) plotted on a displacement diagram as displacement gradients (see Fig. 2 fo

combined to yield a forward deformation whose bulk kinematics are described by

perspective starts with (f), the observed deformation. (g) This bulk deformati

components. (h) These components can be quantified and plotted (component slope

component displacement gradients relates directly to the reciprocal deformation m

system back to its undeformed state.
through in detail to demonstrate the method. For clarity, we

consider the discrete and distributed components separately

and combine them at the end of the analysis.
3.1. Analysis of two-dimensional systems

Displacement diagram analysis of a two-dimensional

system requires two orthogonal transects (x 0 and y 0) across

the deformed system. Generally, one of these transects is

inscribed parallel to the bulk shear plane of the system. A

displacement diagram must be created for cumulative

displacement in the x 0 direction as measured along the x 0

transect (Ux0 vs. x 0). Another displacement diagram is

required for cumulative displacement in the y 0 direction as

measured along the y 0 transect (Uy0 vs. y 0). Both of these

displacement diagrams record only shortening or elongation

along the measured transect and, therefore, reflect the

coaxial component of the deformation.

It is also possible to have displacement perpendicular to
pproaches to the consideration of a deformation. From a forward modeling

deformation into discrete and distributed components. These components

r symbols). (d) The components of forward deformation are (e) graphically

the deformation matrix D. In contrast, analysis from a reciprocal (Eulerian)

on can be considered as a combination of both distributed and discrete

s) and combined (total slope) on a displacement diagram. (i) The sum of the

atrix E that describes the reciprocal deformation necessary to transform the



Fig. 4. A two-dimensional example of simple shear deformation involving both discrete and distributed components. (a) Photograph of an undeformed stack of

computer cards, 9 cm thick. Three circles are drawn on the cards and a line is initially perpendicular to what will be the shear plane. (b) The angle q 0 describes

the orientation of the long axis of the finite strain ellipse with respect to the shear plane. (c) An annotated photograph of the computer cards after deformation.

Three zones of distributed deformation are separated by two discrete faults. (d) A schematic line drawing of the deformation shown in (c). Values of R and q 0

are shown for each zone of distributed deformation. Values of forward discrete displacement along each fault are also indicated. (e) The reciprocal

displacement diagram that describes the retrodeformation. Dashed lines indicate component displacement gradients. Displacement gradient values are

discussed in the main text.
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the measured transect. This type of displacement reflects the

non-coaxial component of deformation. Consequently,

displacement diagrams must be created for cumulative

displacement in the x 0 direction as measured along the y 0

transect (Ux0 vs. y 0) and for cumulative displacement in the

y 0 direction as measured along the x 0 transect (Uy0 vs. x 0).

3.2. A simple shear example in detail

The system shown in Fig. 4 has three regions of distributed

deformation separated by two faults. To begin, we inscribe

orthogonal transects (x0 and y0), with one transect (x0 in this

case) parallel to the bulk shear plane.Analysis of this system is

simplified by the fact that we know the deformation was

simple shear. Consequently, the deformation can be described

with a single displacement diagram. The only displacement in

the simple shear example is in the x0 direction as measured

along the y0 transect (Ux0 vs. y0). There is no cumulative

displacement in the x0 direction as measured along the x0

transect (Ux0 vs. x
0), in the y0 direction asmeasured along the y0

transect (Uy0 vs. y
0), or in the y0 direction asmeasured along the

x0 transect (Uy0 vs. x
0). Therefore, we can quantify deformation

in the system by measuring displacement in the x0 direction

along the y0 transect.

3.2.1. Distributed displacement

Each of the three zones of distributed deformation has a

finite strain ellipse that we know accumulated in simple

shear. For each zone, the observed aspect ratio (R) and the

orientation of the strain ellipse’s long axis (q 0; see Fig. 4b)

can be used to calculate the forward deformation matrix that

produced these values.

The bottom zone has a strain ellipse with an aspect ratio

of RZ1.43 and an orientation of q 0Z418. Comparing these

parameters with results from forward deformation models

for simple shear, we find that the following forward

distributed deformation matrix (Ddistributed) best matches

our observations:

Ddistributed Z
1 K0:36

0 1

" #
(1)

Once the forward distributed deformation matrix is

known, we calculate the reciprocal distributed deformation

matrix (Edistributed) by finding the matrix inverse of

Ddistributed:

Edistributed ZDK1
distributed Z

1 K0:36

0 1

" #K1

Z
1 0:36

0 1

" #
: (2)

Applying Edistributed to the bottom zone would undeform

the distributed deformation in that zone. This matrix is

composed of two component matrices, the identity matrix
(I) and the reciprocal distributed displacement gradient

matrix Hdistributed:

Edistributed Z ICHdistributed: (3)

Rearranging and solving for Hdistributed in this specific

case:

Hdistributed ZEdistributed KIZ
1 0:36

0 1

" #
K

1 0

0 1

" #

Z
0 0:36

0 0

" #
: (4)

Hdistributed describes the reciprocal displacement gradi-

ents for the bottommost zone of distributed deformation.

Because of the simple shear nature of deformation, only one

of these gradients is non-zero. This displacement gradient is

plotted on the reciprocal displacement diagram in Fig. 4e.

This diagram shows that, over the 3.89 cm thickness of the

zone, this displacement gradient produces 1.40 cm (Z
0.36!3.89 cm) of distributed displacement.

Analysis of the middle and top zones of distributed

deformation follows these same procedures. For the middle

zone, we find a reciprocal distributed displacement gradient

of vUx0 =vy0Z1.68, which produces 4.10 cm of distributed

displacement over the 2.33 cm thickness of the zone. For the

top zone, we find a reciprocal distributed displacement

gradient of vUx0 =vy0Z0.66, which produces 1.76 cm of

distributed displacement over the 2.67 cm thickness of the

zone. Both of these displacement gradients are plotted on

the displacement diagram on Fig. 4e.

To calculate the bulk reciprocal distributed displacement

gradient, we sum the reciprocal displacements from each

zone and divide by the total thickness of the system.

vUx0 =vy0 Z ð1:40C4:10C1:76Þ=9:0Z 0:81 (5)

This displacement gradient is plotted as a dashed line on

Fig. 4e. Because this is a simple shear deformation, we

know that only one reciprocal distributed displacement

gradient has a non-zero value. These quantities are:

vUx0 =vx0 Z 0; (6a)

vUx0 =vy0 Z 0:81; (6b)

vUy0 =vx0 Z 0; (6c)

vUy0 =vy0 Z 0: (6d)

Consequently, we know the cumulative reciprocal

distributed displacement gradient matrix is:

Hdistributed Z
vUx0 =vx0 vUx0 =vy0

vUy0 =vx0 vUy0 =vy0

" #
Z

0 0:81

0 0

" #
: (7)
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3.2.2. Discrete displacements

Discrete displacement occurred along the two faults. The

reciprocal displacement gradient for the discrete component

is calculated by measuring the cumulative offset across

these faults and dividing by the total thickness of the

deformed system. The distance along the y 0 transect from

the bottom edge of the system to the first fault is 3.89 cm.

The measured discrete offset along this fault is 0.91 cm in

the negative x 0 direction (UxZK0.91 cm). However, we are

interested in reciprocal displacement, which is identical in

magnitude and opposite in sign (i.e. Ux0Z0.91 cm). The

distance to the next fault is 2.44 cm; reciprocal displace-

ment for that fault is Ux0Z0.79 cm. These reciprocal

discrete displacements are plotted as gray circles on the

reciprocal displacement diagram in Fig. 4e. The cumulative

discrete displacement is plotted as gray boxes. To calculate

the reciprocal discrete displacement gradient (vUx0 =vy0) we

sum the displacements and divide by the thickness (9.0 cm)

of the deformed zone:

vUx0 =vy0 Z ð0:91C0:79Þ=9:0Z 0:19 (8)

This reciprocal displacement gradient is plotted as a

dashed line on Fig. 4e.

We can now calculate the reciprocal discrete displace-

ment gradient matrixHdiscrete. Because this is a simple shear

deformation, only one reciprocal discrete displacement

gradient has a non-zero value. These quantities are:

vUx0 =vx0 Z 0; (9a)

vUx0 =vy0 Z 0:19; (9b)

vUy0 =vx0 Z 0; (9c)

vUy0 =vy0 Z 0: (9d)

Therefore the reciprocal discrete displacement gradient

matrix is:

Hdiscrete Z
vUx0 =vx0 vUx0 =vy0

vUy0 =vx0 vUy0 =vy0

" #
Z

0 0:19

0 0

" #
: (10)
3.2.3. Quantifying combined distributed and discrete

deformation

Summing the displacement gradient matrices from the

discrete and distributed components yields the reciprocal

displacement gradient matrix H. In general:

HZHdistributed CHdiscrete: (11a)

For this specific case:

HZHdistributed CHdiscrete

Z
0 0:81

0 0

" #
C

0 0:19

0 0

" #
Z

0 1

0 0

" #
: (11b)

On the displacement diagram in Fig. 4e, this cumulative
reciprocal displacement gradient (vUx0 =vy0Z1) is plotted as

a solid line and is the sum of the two component

displacement gradients that are plotted as dashed lines.

The reciprocal deformation matrix is therefore:

EZ ICHZ
1 0

0 1

" #
C

0 1

0 0

" #
Z

1 1

0 1

" #
: (12)

E describes the bulk reciprocal deformation of the entire

system. The matrix inverse of E is the deformation matrix

D:

DZEK1 Z
1 1

0 1

" #K1

Z
1 K1

0 1

" #
: (13)

D describes the bulk forward deformation of the system,

which resulted in the discrete and distributed components of

the observed deformation. D allows us to characterize the

deformation of the entire system with a single strain ellipse

(in this case, RZ2.6 and q 0Z328) or with a bulk

displacement field.
4. One-dimensional example

The simple shear example presented above is a good

introductory example because (1) it contains only one non-

zero displacement gradient term, and (2) the thickness of the

deforming zone does not change during deformation.

Quantification of shortening along a coordinate axis

introduces complexity to the mathematical approach. To

illustrate this, we next apply the method to a one-

dimensional example of deformed carbonates (Fig. 5).
4.1. Analysis of one-dimensional systems

A one-dimensional system requires a single transect (x 0)

inscribed parallel to the shortening or extension direction.

Quantifying the deformation requires construction of a

displacement diagram for cumulative reciprocal displace-

ment in the x 0 direction (Ux0) as measured along the x 0

transect (Ux0 vs. x 0).

Deformed carbonates often contain regions characterized

by discrete deformation features (e.g. stylolites) and regions

of distributed deformation features (e.g. deformed fossils).

At a magnified field of view the deformed fossils may

undergo pressure solution and anisotropic volume loss (e.g.

see fig. 7.12 in Ramsay and Huber, 1983). Consequently, we

will make the assumption that the deformed shape of the

finite strain markers results primarily from one-dimensional

anisotropic solution transfer manifested by shortening in the

x 0 direction (parallel to stylolite peaks) without a compen-

sating perpendicular extension. This simplifying assump-

tion allows us to consider the deformation of these markers

as one-dimensional.

A slab of Indiana limestone is located in Room 178 in



Fig. 5. Flow chart describing the construction of a reciprocal displacement diagram, using a one-dimensional system as an example. (a) Schematic diagram and

inset photograph of the deformed carbonate in Room 178, Weeks Hall, University of Wisconsin. Fingertip for scale in the photograph. This is the deformed, or

reference, state of the system showing both the strained markers (distributed deformation) and the stylolites (discrete deformation). (b) Schematic diagram of

the system following reciprocal distributed deformation and the corresponding reciprocal displacement diagram. The shaded region describes cumulative

displacement and the dashed line indicates the displacement gradient. (c) Schematic diagram of the system following reciprocal discrete deformation and the

corresponding reciprocal displacement diagram. The shaded boxes describe cumulative displacement and the dashed line indicates the displacement gradient.

(d) Schematic diagram of the system following both reciprocal distributed and reciprocal discrete deformation (i.e. this is the undeformed state) and the

corresponding cumulative reciprocal displacement diagram. The total reciprocal displacement gradient is the sum of the two component gradients.
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Weeks Hall at the University of Wisconsin. This slabbed

sample (Fig. 5a) contains both stylolites (discrete defor-

mation) and strained markers (distributed deformation). The

deformation is assumed to result exclusively from burial

compaction. A 46.8-cm-long section of this deformed

carbonate was analyzed. All measurements used in our

analysis are presented in Table 2.
4.2. Distributed displacement

To simplify the measurements and calculations, a

transect line, x 0, is oriented parallel to the shortening

direction recorded by the stylolite peaks (Fig. 5b). A

transect line oblique to the shortening direction would

require an additional transect perpendicular to the first.



Table 2

Measurements of discrete displacement and calculations of distributed displacement from deformed carbonate in Room 178, Weeks Hall, University of

Wisconsin. These values are used to create the displacement diagrams in Fig. 5

Reciprocal distributed displacement Reciprocal discrete displacement

Interstylolite

zone

Finite strain x 0 stretch Thickness

(cm)

Reciprocal

distributed

displacement

(cm)

Cumulative

reciprocal

distributed

displacement

(cm)

Stylolite Position

(cm)

Reciprocal

discrete

displacement

(cm)

Cumulative

reciprocal

discrete

displacement

(cm)

A 1.20 0.83 10.35 2.07 2.07 1 10.35 0.78 0.78

B 1.25 0.8 10.58 2.65 4.72 2 20.95 0.67 1.45

C 1.17 0.85 16.61 2.82 7.54 3 37.55 0.85 2.30

D 1.2 0.83 9.22 1.84 9.38
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The three stylolite seams divide the carbonate into four

regions of distributed deformation (labeled zones A–D on

Fig. 5a). Within each zone the distributed deformation is

recorded by strained markers (micritic blobs, crinoid stems,

etc.; see inset on Fig. 5a). The finite strain in each of the

zones was calculated using the center-to-center technique

and the Fry method (our calculations are summarized in

Table 2; for methodology see Ramsay and Huber (1983, pp.

107–113)).

The measured finite strain is not identical in each zone of

distributed deformation. The initial length of each zone was

calculated using the deformed length and the finite strain of

the zone. By undeforming the observed finite strain ellipse,

the initial length of the zone can be calculated. The

difference between the final and initial lengths of each zone

is the reciprocal distributed displacement for that zone. The

displacements from all the zones were summed on

a displacement diagram to yield a bulk reciprocal

distributed displacement for the entire area.

For example, zone A is 10.35 cm across and records a

stretch of 0.83 parallel to the transect. Therefore, zone A

was originally 12.4 cm (Z10.35 cm!(1/0.83)) across and

the endpoints of the zone extend 2.1 cm during reciprocal

deformation. We sum the reciprocal distributed displace-

ments for all four zones and consider the resulting

movement of the point P. This point is displaced 9.4 cm

in the x 0 direction (Ux0Z9.4) due to the cumulative

reciprocal distributed displacement for all four zones. We

are calculating the reciprocal displacement (i.e. undeform-

ing the rock) and therefore reciprocal displacement is in the

positive x 0 direction.

4.3. Distributed displacement gradient

The reciprocal displacement gradient (i.e. slope of the line

on the reciprocal displacement diagram) is the cumulative

reciprocal distributed displacement (Ux0 ) divided by the

deformed length (x 0) of the carbonate: Ux0 =x
0Z9.4/46.8Z

0.20. This reciprocal displacement gradient is plotted on a

reciprocal displacement diagram on Fig. 5b.

The finite strain corresponding to the distributed

displacement gradient can be quantified using linear algebra
(see Appendix A for a more detailed treatment). The

reciprocal distributed displacement gradient matrix in one

dimension is simply the calculated displacement gradient

(HdistributedZ[0.20]).
4.4. Discrete displacement

For each stylolite seam, the distance between stylolite

peaks yields a minimum estimate of the discrete displace-

ment. The same transect utilized for the distributed

deformation is used for analysis of the discrete deformation.

Starting at the left end of the x 0 transect (Fig. 5c), we

measure the distance to the first stylolite seam (10.35 cm;

stylolite 1) and the amount of shortening (0.78 cm). The

process is repeated for all stylolite seams. Summing the

displacement on all stylolite seams (Table 2), we calculate

2.3 cm of cumulative displacement due to pressure solution.

We again consider the displacement of point P to determine

reciprocal displacement. P moves 2.3 cm in the positive x 0

direction due to the reciprocal discrete displacement and

therefore Ux0Z2.3.
4.5. Discrete displacement gradient

To quantify the deformation of the system due to discrete

deformation we can calculate a reciprocal displacement

gradient by considering the movement of point P (Fig. 5c)

during the reciprocal deformation of the stylolite seams.

This point is displaced 2.3 cm in the positive x 0 direction

(Ux0Z2.3) over the transect distance of 46.8 cm (x 0Z46.8).

Consequently, the reciprocal discrete displacement gradient

is the cumulative reciprocal displacement across the

stylolites divided by the initial transect length: Ux0 =x
0Z

2.3/46.8Z0.05. This reciprocal displacement gradient is

plotted on a reciprocal displacement diagram in Fig. 5c.

This displacement gradient produced the strain that

accumulated through discrete displacement. The reciprocal

discrete displacement gradient matrix Hdiscrete in one

dimension is the calculated displacement gradient (Hdiscrete

Z[0.05]).
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4.6. Quantifying combined distributed and discrete

deformation

We can now calculate the initial length of the system.

Combining the discrete and distributed components of the

total deformation is straightforward with the reciprocal

displacement diagram. In this specific example:

HZHdistributed CHdiscrete Z ½0:20�C ½0:05�

Z ½0:25�: (14)

This bulk reciprocal displacement gradient matrix is the

sum of the component displacement gradient matrices (Fig.

5d). The reciprocal deformation matrix E is the sum of the

identity matrix and H:

EZ ICHZ ½1�C ½0:25�Z ½1:25�: (15)

Multiplying E by the deformed transect length (46.8 cm),

we calculate the undeformed transect length of 58.5 cm (Z
[1.25]!46.8 cm). Thus, we have accounted simultaneously

for both the discrete and distributed components of the

deformation. We can quantify the bulk length change of

the carbonate during forward deformation by calculating the

determinant of D, where D is the matrix inverse of E:

DZEK1 Z ½1:25�K1 Z ½0:8�: (16)

As det(D)Z0.8 this one-dimensional system lost 20% of

its length as a result of the combined discrete and distributed

components of the bulk deformation.
5. A two-dimensional general shear example

5.1. Two difficulties for two-dimensional analysis

The two previous examples are relatively straightfor-

ward, containing only simple shear or uniaxial shortening.

When pure shear and simple shear components are

combined during a single deformation, mathematical

complexities arise. To use the displacement diagram

method in such a case, we need to address (1) rotation,

particularly for the distributed component of deformation;

and (2) the effect of the pure shear component on the

calculation of discrete deformation. We address these in

order below.

5.1.1. The effect of rotation on discrete deformation

To evaluate the discrete component of a given defor-

mation in two or three dimensions, it is necessary to address

the rotation of faults. Rotation of faults is observed in

experimental models (e.g. Cobbold, 1977) and is required

for realistic tectonic models (e.g. Luyendyk, 1991).

Geological markers (e.g. sedimentary bedding) and paleo-

magnetic analysis allow evaluation of finite rotation. If these

rotations are determined, displacement fields can be

constructed to accommodate these rotational displacements
in addition to the strain-induced displacements. Gradients of

these rotational displacement fields can be summed along

with gradients of the strain-related fields to properly

quantify the bulk deformation of the system. However, for

the purposes of this example, we will assume that the faults

do not rotate.

5.1.2. The effect of rotation on distributed deformation

For the distributed components of deformation in our

previous examples (simple shear and uniaxial shortening),

we assumed the amount of coaxiality vs. non-coaxiality (i.e.

shear-induced vorticity; Lister and Williams, 1983) in the

system. In general, however, one does not know the amount

of coaxiality of a deformed region a priori because finite

strain does not provide information about the deformation

path. Consequently, the displacement diagram method can

be difficult to implement accurately because the particular

displacement gradient values are unknown.

This problem is resolved by evaluating the deformation

path, which has long been a subject of interest in structural

geology (e.g. Elliott, 1972; Means, 1976). In particular, we

utilize vorticity analysis, which quantifies the degree of

coaxiality within a deforming rock mass. The structural

geology literature commonly uses the kinematic vorticity

(Wk; Truesdell, 1953) to quantify coaxiality. For the case of

two-dimensional deformation, one can distinguish a coaxial

deformation with no rotation (pure shear: WkZ0), non-

coaxial deformations with combinations of pure shear and

simple shear (1OWkO0), and simple shear (WkZ1). Wk is

inherently an infinitesimal quantity, therefore geological

analysis solves for a ‘bulk’ vorticity, or Wn (e.g. Passchier,

1988). In fact, Wn is the preferable quantity for our ‘bulk

displacement’ approach, as it provides an integrated

vorticity for the entire deformation.

Although there are limitations to vorticity analysis (e.g.

Tikoff and Fossen, 1995), it has proved extremely useful in

determining the deformation path from deformed rock.

These approaches include interpretations of shear bands

(Bobyarchick, 1986), deformed makers in shear zones

(Srivastava et al., 1995), porphyroblast rotation (Ghosh,

1987; Vissers, 1989; Simpson and De Paor, 1993),

porphyroclast interaction (Tikoff and Teyssier, 1994),

deformed sets of veins and dikes (Passchier and Urai,

1988; Daczko et al., 2001), crystallographic fabrics (Law et

al., 1984; Wallis, 1992; Erskine et al., 1993), tension gashes

(Tikoff and Fossen, 1995), and orientation of finite strain

with respect to shear zone boundaries (Fossen and Tikoff,

1993; Bailey and Eyster, 2003).

5.1.3. The effect of the pure shear component on the

calculation of discrete deformation

In most deformed systems that contain a coaxial

component of deformation, the distance between the faults

changes during deformation as a result of the deformation of

the blocks between the faults. This change in fault spacing is

demonstrated in Fig. 6. The measured cumulative slip on the



Fig. 6. A schematic example of a plane strain shear zone that includes both discrete and distributed components of deformation. (a) The shear zone is composed of three component zones of distributed

deformation separated by two discrete faults. (b) An illustration of the thickness of each of the three component distributed zones prior to deformation. These thicknesses were calculated by undeforming the finite

strain recorded in each zone (see text for calculations). (c) An illustration of the system following distributed deformation only. (d) An illustration of the system following both distributed and discrete

deformation. Note that (1) these components were active simultaneously and we separate them only for clarity of discussion, and (2) the discrete offset is assumed to be due entirely to straightforward fault slip—

slip on the surfaces due to differential finite strain in the adjacent blocks is ignored.
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two faults is Ux0ZK2.85 m. The faults start at a spatial

position of y 0Z1.2 and y 0Z3.0 when the entire system is

4.2 m thick. The faults end at spatial positions of y 0Z1.0 m

and y 0Z2.2 m when the system is 3.2 m thick. The

calculated reciprocal displacement gradient depends on

whether the post- or pre-deformational system thickness is

used. If the observed post-deformational system thickness is

used, then vUx0 =vy0ZK2.85/3.2ZK0.89, whereas if the

pre-deformational thickness is used, the vUx0 =vy0ZK2.85/

4.2ZK0.68. The pre-deformation system thickness leads to

the correct reciprocal discrete displacement gradient. Using

the post-deformation thickness results in a displacement

gradient too large in proportion to the coaxial component of

the deformation.

This problem arises in the application of the displace-

ment diagram method to any system of combined discrete

and distributed deformation whose kinematics includes both

coaxial and non-coaxial components. Because our earlier

examples were non-coaxial (simple shear in the card deck)

or one-dimensional (deformed carbonates), this problem

was not of concern. However, many examples of deformed

systems include both coaxial and non-coaxial components.

Consequently, it is necessary to first reconstruct the coaxial

component of distributed component of deformation before

calculating the displacement gradients associated with the

discrete component of deformation. We apply this method-

ology in the analysis below.
5.1.4. Differential finite strain in adjacent fault-bounded

blocks

An additional complication arises in systems involving

zones of distributed deformation that record different finite

strains and are separated by surfaces of discrete displace-

ment. For example, in Fig. 6c, the middle block records a

larger amount of finite strain than the outer blocks. The

surfaces between the blocks necessarily have discrete offset

due to this differential finite strain. Consequently, the

discrete displacement measured from offset markers in Fig.

6a involves components from differential distributed finite

strain between the blocks (Fig. 6c) and from straightforward

slip along the faults. This complication is compounded by

the fact that the offset due to differential finite strain will

vary systematically along the surface, from zero at the

center of the system to a maximum at the edges. Analysis of

several offset markers along such a surface might provide

sufficient information to estimate the importance of offset

due to differential finite strain vs. straightforward fault slip.

However, in general, this complication must be accepted as

an inconvenience and displacement diagram results for

these systems are imperfect at best. In the following analysis

of the deformed system shown in Fig. 6, we lack sufficient

information to analyze the relative importance of differen-

tial finite strain vs. fault slip. Consequently, we have ignored

the offset due to differential distributed finite strain between

the blocks.
5.2. Example of shear zone analysis

A schematic shear zone is presented in Fig. 6. The shear

zone displays both a discrete component of deformation,

denoted by the offset markers, and a distributed component,

which causes deformation of the initially circular markers

within the shear zone. Kinematically, the bulk deformation

involved both coaxial and non-coaxial components, though

we do not know in what proportion. We demonstrate below

that vorticity analysis is one method of addressing the

rotational component of the deformation. Correct retro-

deformation of this shear zone also requires consideration of

the changing thickness of the system due to the coaxial

component of the deformation. We assume the shear zone

neither gained nor lost volume during deformation, and that

the deformation is plane strain.
5.2.1. Distributed displacement

Three zones of distributed deformation are separated by

two faults. The inner zone of distributed deformation (zone

2) has a higher finite strain than is observed in the two

identical outer zones of distributed deformation (zones 1

and 2).

5.2.1.1. Calculation for zone 2. We use the observed finite

strain in each component shear zone to estimate vorticity,

using the Rs vs. q
0 method (e.g. Bailey and Eyster, 2003). On

Fig. 6, zone 2 (the highest strain zone) has a finite strain

ellipse with an aspect ratio of RZ3.45 at an orientation of

q 0Z12.88 to the shear zone boundary. The Rs vs. q
0 method

provides a vorticity value of WkZ0.75. In addition, one can

uniquely determine the components of simultaneous pure

shear (kxZ1.5) and simple shear (gZ1.0) that caused this

deformation (e.g. fig. 3 of Tikoff and Fossen, 1995). The

plane strain assumption requires that kyZ1/kxZ0.67. We

emphasize that finite strain markers are not essential, as an

estimate of principal finite strain orientations (e.g. foliation,

lineation) and kinematic vorticity would provide sufficient

information for the analysis.

With the strain values calculated above, we can

characterize the shear strain caused by the distributed

deformation. Tikoff and Fossen (1993) show that, in cases of

simultaneous pure and simple shear, the shear strain term G
is a function of the simple shear component (g) and the pure

shear components (kx and ky) of deformation:

GZ
gðkx KkyÞ

lnðkx=kyÞ
: (17)

For zone 2:

GZ
1ð1:5K0:67Þ

lnð1:5=0:67Þ
Z 1:03: (18)

Using the relationships:

kx Z 1CvUx=vx; (19a)
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GZ vUx=vy; (19b)

ky Z 1=kx Z 1CvUy=vy; (19c)

we calculate the forward distributed displacement gradients,

such that:

vUx=vx Z 0:5; (20a)

vUx=vy Z 1:03; (20b)

vUy=vx Z 0; (20c)

vUy=vy ZK0:33: (20d)

The corresponding distributed displacement gradient

matrix is:

Gdistributed Z
0:5 1:03

0 K0:33

" #
: (21)

The next step is to calculate the reciprocal distributed

displacement gradient matrix Hdistributed. The most instruc-

tive way to accomplish this is to (1) calculate the forward

distributed deformation matrix Ddistributed by summing

Gdistributed and the identity matrix, (2) take the matrix

inverse of Ddistributed, which yields the reciprocal distributed

deformation matrix Edistributed, and (3) subtract the identity

matrix from this to yield Hdistributed, the reciprocal

distributed displacement gradient matrix:

Ddistributed ZGdistributed CI

Z
0:5 1:03

0 K0:33

" #
C

1 0

0 1

" #

Z
1:5 1:03

0 0:67

" #
; (22)

Edistributed ZDK1
distributed Z

1:5 1:03

0 0:67

" #K1

Z
0:67 K1:03

0 1:5

" #
; (23)

Hdistributed ZEdistributed KI

Z
0:67 K1:03

0 1:5

" #
K

1 0

0 1

" #

Z
K0:33 K1:03

0 0:5

" #
: (24)

Thus, the reciprocal distributed displacement gradients

for zone 2 are:

vUx0 =vx0 ZK0:33; (25a)
vUx0 =vy0 ZK1:03; (25b)

vUy0 =vx0 Z 0; (25c)

vUy0 =vy0 Z 0:5: (25d)
5.2.1.2. Restoration of the original thickness. As discussed

in Section 5.1.3, we must restore the deformed system to its

initial thickness in order to calculate the correct reciprocal

discrete displacement gradient. We can accomplish this task

by restoring each of the three zones of distributed

deformation to its initial thickness. The reciprocal dis-

tributed deformation matrix Edistributed for each zone can be

used for this purpose.

The original thickness of zone 2 can be calculated by

considering how this reciprocal distributed deformation

matrix would affect the thickness of this 1.2-m-thick zone.

Inspection of this matrix shows that only the vUx0 =vy0

component of Edistributed (Eq. (23)) will affect the thickness

of the zone. We can therefore calculate that zone 2 was

initially 1.2!1.5Z1.8 m thick.

5.2.1.3. Calculation for zones 1 and 3. We can find

reciprocal deformation matrices for zones 1 and 3 by

following the same procedure as above. These zones exhibit

identical finite strain and are characterized by an RZ1.56

and q 0Z148, which implies a WkZ0.30. This vorticity

corresponds to a pure shear component of kxZ1.2 and a

simple shear component of gZ0.25. The plane strain

assumption requires that kyZ0.83 and Eq. (17) allows us to

calculate GZ0.25. Using the relationships in Eq. (19a)–

(19c), we calculate the forward distributed displacement

gradients, such that:

vUx=vx Z 0:2; (26a)

vUx=vy Z 0:25; (26b)

vUy=vx Z 0; (26c)

vUy=vy ZK0:17: (26d)

The corresponding distributed displacement gradient

matrix is:

Gdistributed Z
0:2 0:25

0 K0:17

" #
: (27)

Again, we want to calculate reciprocal displacement

gradients. Following the process shown in Eqs. (22)–(24),

we find that the reciprocal distributed displacement gradient

matrix for zones 1 and 3 is:

Hdistributed Z
K0:17 K0:25

0 :20

" #
: (28)

Thus, the reciprocal distributed displacement gradients
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for zones 1 and 3 are:

vUx0 =vx0 ZK0:17; (29a)

vUx0 =vy0 ZK0:25; (29b)

vUy0 =vx0 Z 0; (29c)

vUy0 =vy0 Z 0:2: (29d)

5.2.1.4. Restoration of the original thickness. The original

thickness of zones 1 and 3 can be calculated by considering

how the Edistributed corresponding to the reciprocal dis-

tributed displacement gradients in Eq. (29a)–(29d) would

affect the thickness of these 1.0-m-thick zones. As we found

for zone 2, inspection of this matrix shows that only the

vUx0 =vy0 component of the matrix will affect the thickness of

the zone. We can therefore calculate that each zone was

initially 1.0!1.2Z1.2 m thick. Having analyzed the

distributed deformation throughout the entire system, we

can calculate the initial thickness of the system. Summing

the initial thicknesses of the zones, we find that the original

system was 1.2C1.8C1.2Z4.2 m thick.

5.2.1.5. Bulk reciprocal distributed displacement. Finally,

we must calculate the reciprocal distributed displacement

gradient matrix Hdistributed for the entire system. We now

have sufficient information to calculate the forward

distributed deformation matrix Ddistributed for the entire

system, from which we can calculate the system’s

Hdistributed, as shown for zone 2 in Eqs. (22)–(24). Beginning

with the ky term of Ddistributed, we know that the zone as a

whole shortened from 4.2 to 3.2 m thick during defor-

mation. The ky term is therefore 3.2/4.2Z0.76. Because we

assume this was a constant volume deformation, kx is

therefore constrained to be 1/kyZ1.32.

We can calculate the simple shear term of Ddistributed by

(1) summing the appropriate displacements produced by

each zone’s G term, and (2) dividing this net displacement

by the thickness of the entire system. To calculate the

displacements, we multiply each zone’s G by the initial

thickness of that zone. Consequently, the appropriate

displacements for the three zones are:

Zone 1 : G!y0 Z 0:25!1:2 mZ 0:3 m; (30a)

Zone 2 : G!y0 Z 1:03!1:8 mZ 1:85 m; (30b)

Zone 3 : G!y0 Z 0:25!1:2 mZ 0:3 m: (30c)

Thus, the net distributed displacement 0.3C1.85C0.3Z
2.45 m. Dividing this value by the thickness of the entire

system we find that GZ2.45/4.2Z0.58. We now have all of

the terms of the forward distributed deformation matrix:
Ddistributed Z
1:32 0:58

0 0:76

" #
: (31)

This matrix describes the forward deformation of the

distributed component of the entire system. From this

matrix we can calculate the reciprocal distributed displace-

ment gradient matrix Hdistributed for the entire system by

following the same procedure shown in Eqs. (23) and (24).

Doing this, we find that:

Hdistributed Z
K0:24 K0:58

0 0:32

" #
: (32)
5.2.2. Discrete displacement

The discrete component of deformation is relatively easy

to characterize, once the original thicknesses are known.

Measuring along the y 0 transect, the cumulative reciprocal

displacement on the discrete zones is K2.85 m (Ux0Z
K1.55CK1.3). Consequently, vUx0 =vy0Z K2.85/4.2Z
K0.68. Notice that the reciprocal displacement gradient

was calculated by dividing the cumulative reciprocal

displacement by the initial thickness of the system for the

reasons described in Section 5.1.3. The reciprocal discrete

displacement gradient matrix is:

Hdiscrete Z
0 K0:68

0 0

" #
: (33)
5.2.3. Combined discrete and distributed displacement

We can now combine the reciprocal discrete and

distributed displacement gradient matrices:

HZHdistributed CHdiscrete

Z
K0:24 K0:58

0 0:32

" #
C

0 K0:68

0 0

" #

Z
K0:24 K1:26

0 0:32

" #
: (34)

The reciprocal deformation matrix is therefore:

EZ ICHZ
1 0

0 1

" #
C

K0:24 K1:26

0 0:32

" #

Z
0:76 K1:26

0 1:32

" #
: (35)

From E we calculate the deformation matrix:

DZEK1 Z
0:76 K1:26

0 1:32

" #K1

Z
1:32 1:26

0 0:76

" #
: (36)

D describes the bulk forward deformation of the entire
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system due to both the discrete and distributed components

of the deformation.
6. Application to the San Andreas Fault system

6.1. Finite strain vs. neotectonic deformation

All of the above examples employ finite strain data for

the displacement diagram method analysis. The same

methodology can be applied to neotectonic settings with

considerably less difficulty. There are two primary reasons

for this relative simplicity: (1) the boundary conditions of

deformation are well known, and (2) one can directly use

displacements—both rates from geodesy and offset markers

from geology—to calculate bulk deformation. Below, we

apply the displacement diagram method to a portion of the

creeping segment of the San Andreas Fault (SAF) system in

central California.

One caveat to our analysis is that a geodetic signal may

contain components of elastic strain accumulation that will

be released during the earthquake cycle (e.g. Thatcher,

1995). The observations we use for this analysis are

primarily from the region adjacent to the creeping segment

of the SAF, in which the short-term offset is approximately

the same as the long-term offset rates on ‘locked’ segments

of the SAF. Consequently, relatively little elastic strain has

the opportunity to accumulate and, to a first approximation,

distributed deformation across this zone reflects permanent

deformation of the crust adjacent to the fault. Further, the

geodetic rates are compatible with estimates of distributed

transpressional deformation throughout western California,

determined from fold axis orientations adjacent to the SAF

(e.g. Jamison, 1991; Tikoff and Peterson, 1998; Teyssier

and Tikoff, 1998).

6.2. Analysis of three-dimensional systems

Analysis of a three-dimensional deformation requires

three mutually orthogonal transects and nine displacement

diagrams. Along each transect, three directions of displace-

ment must be measured: displacement parallel to the

transect (reflecting the pure shear component of defor-

mation) and shear displacement parallel to each of the other

two transects (reflecting the simple shear component of

deformation).

Some three-dimensional deformations, however, can be

analyzed more simply if constant volume is assumed (e.g.

Little, 1996). A three-dimensional deformation can be

characterized by (1) analyzing a plane within the system

using four displacement diagrams, (2) calculating the two-

dimensional deformation matrix for that plane, (3) using the

determinant of the matrix to calculate area change within

the plane, and (4) creating a three-dimensional matrix that

satisfies the constant volume system assumption. This

method is not applicable to systems that have a component
of simple shear movement perpendicular to the analyzed

plane (i.e. the plane in which the two-dimensional

deformation matrix was calculated). Little (1996) used the

constant volume assumption to conduct a three-dimensional

displacement diagram analysis of a segment of the

Marlborough fault system in South Island, New Zealand.

We, too, will utilize this assumption for our analysis of the

SAF.
6.3. Geological background

The well-documented geology in central California

provides an opportunity to apply the displacement diagram

method to a natural geological example (Fig. 7). We will

apply the displacement diagram method to only a small

portion of the SAF system within the creeping segment of

the fault near King City, California. For our analysis, we

will calculate a displacement field for both distributed and

discrete components of deformation along this segment of

the SAF. Our calculations are based on the plate motion

vector between the Pacific plate and the Sierra Nevada

microplate (DeMets et al., 1990; Argus and Gordon, 2001),

which provides the boundary conditions for the analysis.

The present angle of convergence is approximately 68

clockwise from the SAF at the latitude of central California

(Argus and Gordon, 2001), and the 39.0 mm/yr rate of

convergence (Argus and Gordon, 2001) is resolvable into

transcurrent (38.8 mm/yr) and shortening (4.1 mm/yr)

components (Fig. 6). This plate motion vector has described

the California margin since w6–8 Ma (Harbert, 1991;

Atwater and Stock, 1998), and we will limit our analysis to

the last 6 M.y.

The SAF system contains multiple strands of parallel,

strike-slip faults. In central California, the Rinconada and

Hosgri–Nacimiento faults occur west of the main SAF (Fig.

7). Although total offset estimates exist for the Rinconada

and San Gregorio–Hosgri faults (Graham and Dickinson,

1978; Sedlock and Hamilton, 1991), recent geodetic studies

indicate that these faults are presently not accommodating

more than 1 mm/yr of discrete transcurrent displacement

(Argus and Gordon, 2001), while the SAF itself accommo-

dates 34 mm/yr of transcurrent displacement.

Central California is a strike-slip partitioned transpres-

sional system (e.g. Tikoff and Teyssier, 1994; Teyssier and

Tikoff, 1998), in which the SAF accommodates a major

portion, but not all, of the transcurrent displacement

imposed by relative plate motion (e.g. Rymer et al., 1984;

Prescott and Yu, 1986). The remaining motion occurs either

as discrete displacement on sub-parallel strike-slip faults

(e.g. San Gregorio–Hosgri, Rinconada faults) and/or as

distributed displacement in the regions between the faults

(e.g. en échelon folds in the regions between faults; Dibblee,

1976; Harding, 1976; Jamison, 1991; Tikoff and Peterson,

1998).



Fig. 7. A schematic diagram of the San Andreas Fault system in central California and the geodetic data for the relative motion between the Pacific plate and the

Sierra Nevada microplate. (a) Map of California showing the location of the area analyzed. (b) A schematic map of the San Andreas Fault system in that area.

We consider the entire region affected by transpression over the last 6 M.y. SG–HZSan Gregorio–Hosgri fault, RZRinconada fault, SAZSan Andreas Fault.
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6.4. Application of the technique

Prior to any analysis of the system, we establish a

coordinate system to measure against and define the

boundaries of the area we will analyze. In the interest of

simplifying our calculations, we place the x 0 transect

parallel to the trace of the SAF and the y 0 transect

perpendicular to the SAF. We will consider a 180-km-

thick (y 0-parallel) transpressional region that has undergone

deformation in the Neogene associated with the SAF (Fig.

7). The zone begins 40 km southwest of the San Gregorio–

Hosgri fault and extends 40 km NE of the SAF. McCulloch

(1989) outlines the limits of folding offshore SW of the San

Gregorio–Hosgri fault and Namson and Davis (1988)

outline the approximate limit of folding NE of the SAF.

We assume that western California is undergoing bulk

transpressional deformation. The distributed component of

this deformation narrows the thickness of the region as

deformation progresses, which must be taken into consider-

ation when calculating the displacement gradients for the

system. Consequently, as above, we will first consider the

distributed component of the deformation.
6.4.1. Distributed displacement

Because transpressional deformation occurs in the SAF
system, two displacement diagrams are necessary to describe

the deformation in the horizontal plane (i.e. Ux0 vs. y0 and Uy0

vs. y0). A displacement diagram for Ux0 =x
0 is unnecessary

because no fault-parallel, horizontal stretching occurs within

the deforming zone. No displacement diagram for Uy0 vs. x0 is

necessary becausemotion perpendicular to the fault (Uy0 ) does

not vary with position along the fault (x0).

Estimation of the non-coaxiality of the distributed

deformation within the borderlands requires assumptions

about the rates of fault-parallel and -perpendicular displace-

ment. As discussed above, geodetic estimates indicate that

the SAF accommodates 34 mm/yr of transcurrent motion

while the Rinconada and San Gregorio–Hosgri faults

together accommodate 1 mm/yr. Therefore, the borderlands

accommodate the remaining 3.8 mm/yr of the 38.8 mm/yr

of transcurrent displacement. All of the 4.1 mm/yr of

convergent displacement is accommodated by bulk short-

ening perpendicular to the SAF within the borderlands

region.

As a first-order estimate for the last 6 M.y., we calculate

forward displacements of UxZ22.8 km (3.8 mm/yr over

6 M.y.—distributed fault-parallel displacement) and

UyZK24.6 km (K4.1 mm/yr over 6 M.y.—distributed

fault-perpendicular displacement) within this 180-km-

thick borderlands region. The fault-perpendicular
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displacement can be used to determine the initial width of

the region. We calculate that width of the deformed region

was initially 180C24.6Z204.6 km. Thus, the reciprocal

distributed displacement gradients are:

vUx0 =vx0 Z 0; (37a)

vUx0 =vy0 ZK22:8 km=204:6 kmZK0:11; (37b)

vUy0 =vx0 Z 0; (37c)

vUy0 =vy0 Z 24:6 km=204:6 kmZ 0:12: (37d)

In matrix form, these constitute the reciprocal distributed

displacement gradient matrix:

Hdistributed Z
0 K0:11

0 0:12

" #
: (38)

These displacement gradients are plotted on the appro-

priate reciprocal displacement diagrams in Fig. 8.
Fig. 8. Displacement diagrams for the creeping segment of the San Andreas Fault s

displacement gradient in the x 0 direction as measured along the x 0 transect (vU

contributes to a large displacement gradient in the x 0 direction as measured alon

displacement and the light gray area describes cumulative distributed displacemen

the x 0 transect (vUx0 =vx0). (d) The displacement gradient in the y 0 direction as m

deformation in the transpressional borderlands.
6.4.2. Discrete displacement

The amount of discrete offset across the SAF is estimated

at 315 km, based on piercing point reconstructions (Cro-

well, 1962). Since we are interested only in deformation in

the last 6 M.y., a total offset of only 204 km (34 mm/yr over

6 M.y.) is used. If the Rinconada and San Gregorio–Hosgri

faults together accommodate 1 mm/yr of transcurrent

motion, this suggests w3 km of displacement on each

fault over the last 6 M.y.

The above calculations are based on the assumption that

current fault slip rates can be reasonably extrapolated back

to 6 Ma. Using these geodetic measurements, we have

calculated displacements on these faults for forward

deformation over the last 6 M.y., such that:

Ux=x Z 0; (39a)

Ux=y Z 204C3C3 kmZ 210 km; (39b)

Uy=x Z 0; (39c)

Uy=y Z 0: (39d)
ystem, as shown in Fig. 7. Fault abbreviations are as in Fig. 7. (a) There is no

x0 =vx0). (b) The large amount of discrete offset on the San Andreas Fault

g the y 0 transect (vUx0 =vy0). Dark gray boxes describe cumulative discrete

t. (c) There is no displacement gradient in the y 0 direction as measured along

easured along the y 0 transect (vUx0 =vy0) is the result solely of distributed
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As we are interested in reciprocal deformation, we must

convert our calculated values into reciprocal displacements.

This simply involves changing the sign of the displacement

vectors. Normalizing the cumulative reciprocal displace-

ment by the measured transect length results in the

displacement gradients, which are plotted on displacement

diagrams in Fig. 8. The reciprocal discrete displacement

gradients are:

vUx0 =vx0 Z 0; (40a)

vUx0 =vy0 Z ðK204CK3CK3 kmÞ=204:6 kmZK1:03;

(40b)

vUy0 =vx0 Z 0; (40c)

vUy0 =vy0 Z 0: (40d)

In matrix form, these constitute the reciprocal discrete

displacement gradient matrix:

Hdiscrete Z
0 K1:03

0 0

" #
: (41)
6.4.3. Results of combined distributed and discrete

deformation

Combining both the reciprocal discrete and distributed

displacement gradients, we calculate the cumulative

reciprocal displacement gradients, such that:

vUx0 =vx0 Z 0C0Z 0; (42a)

vUx0 =vy0 ZK0:11CK1:03ZK1:14; (42b)

vUy0 =vx0 Z 0C0Z 0; (42c)

vUy0 =vy0 Z 0:12C0Z 0:12: (42d)

These calculations are plotted on the appropriate

displacement diagrams in Fig. 8. The cumulative reciprocal

displacement gradients, in matrix form, are:

HZHdiscrete CHdistributed

Z
0 K1:03

0 0

" #
C

0 K0:11

0 0:12

" #

Z
0 K1:14

0 0:12

" #
; (43)

and the reciprocal deformation matrix is therefore:

EZ ICHZ
1 0

0 1

" #
C

0 K1:14

0 0:12

" #

Z
1 K1:14

0 1:12

" #
: (44)
From E we calculate the deformation matrix:

DZEK1 Z
1 K1:14

0 1:12

" #K1

Z
1 1:02

0 0:89

" #
: (45)

D describes the bulk deformation in central California, as

observed in the horizontal plane, that has accumulated over

the last 6 M.y. due to both the discrete and distributed

components of the transpressional deformation.

Using this two-dimensional information, we can calcu-

late the three-dimensional deformation matrix that describes

this transpressional deformation. D describes a non-plane

strain deformation. By calculating the determinant of D, we

can quantify the amount of material that has moved out of

the horizontal plane during the last 6 M.y. As det(D)Z0.89,

we know that this horizontal plane has lost 11% of its area.

Assuming that the system has not lost any volume, we

conclude that this material has been displaced vertically.

Therefore, we can calculate a three-dimensional defor-

mation matrix by finding a D such that det(D)Z1. We find

that this constraint is satisfied by

DZ

1 1:02 0

0 0:89 0

0 0 1:12

2
64

3
75; (46)

which completely quantifies the bulk transpressional

deformation in central California over the last 6 M.y.

On the scale of central California, the discrete com-

ponent of deformation is accommodated completely on

strike-slip faults. The distributed component accommodates

all of the fault perpendicular shortening and a wrench

component. On a smaller scale, the distributed component

could be viewed as discrete offset, such as that occurring on

regional faults. The folding observed in central California

could, for instance, be caused by faulting at depth (e.g.

Namson and Davis, 1988). Again, we note that the

distinction between distributed and discrete deformation is

scale-dependent. Regardless, the distributed component

accommodates nearly 10% of the transcurrent motion

(Ux0 =y
0 plot on Fig. 8). A shear strain of w0.11 constitutes

w22.5 km (Z0.11!180 km) of distributed wrench motion

in the last 6 M.y. across the entire region. We discuss

implications of this distributed deformation in the Discus-

sion section below.
7. Discussion

7.1. Potential applications

Bulk deformation of rocks is generally accommodated by

a combination of distributed and discrete components over a

wide range of scales. The methodology developed here is an

initial attempt to characterize natural systems that behave in

this manner. The ability to simultaneously characterize both
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discrete and distributed deformation potentially allows us to

address some key issues in structural geology, including

strain compatibility, bulk offset analysis, and characteriz-

ation of deformation in heterogeneous material. These

kinematic approaches will ultimately lead us to better

mechanical understanding of these systems.

A recurring problem in structural geology is the presence

of shear zones whose kinematics deviate significantly from

simple shear (e.g. Wallis, 1992; Bailey and Eyster, 2003).

As pointed out in numerous articles, this leads to strain

compatibility problems unless the walls of the shear zones

are also deformed. Hudleston (1999) suggested that the

problem of strain compatibility caused by non-simple shear

zones is significantly alleviated by considering anastomos-

ing shear zones and deforming lithons between the shear

zones. The methodology outlined in this paper provides one

means for rigorously testing this model.

The displacement diagrammethod alsomakes it possible to

quantify deformation of heterogeneous material. The hetero-

geneous nature of geological deformation is an inevitable

result of lithological heterogeneity. As suggested byGoodwin

and Tikoff (2002), lithological heterogeneity and competence

contrast within a polyphase material lead to strain incompat-

ibilities that result in discrete deformation at some scale.Using

the displacement diagrammethod, strain heterogeneity can be

adequately characterized because of the flexibility of

displacements to describe these systems. Displacement

diagrams are useful tools for analyzing heterogeneous

deformation because displacement field inhomogeneity is

graphically (and quantitatively) apparent on displacement

diagrams as changes in displacement gradients.

The method also allows clear mechanical insight into a

deformed system by evaluating the relative contribution of

discrete and distributed components. For over a decade,

there has been a debate about the strength of the San

Andreas Fault (Mount and Suppe, 1987; Zoback et al., 1987;

Scholz, 2000). Our first-order kinematic analysis suggests

that a significant percentage of transcurrent motion is

distributed over central California rather than occurring on a

discrete fault. In our opinion, this is incompatible with a

‘weak’ fault that should presumably accommodate all the

transcurrent motion. This approach allows us to quantify

observations, which in turn will allow increasingly accurate

mechanical models based on direct observation.

7.2. Problems and assumptions

General application of the displacement diagram method

is complicated by the fact that a large amount of information

is required to properly analyze a deformed zone. Analysis of

the discrete portion of deformation requires knowledge of

the original fault geometry, sufficiently abundant offset

markers and an independent estimate of rotation (shear-

induced vorticity). Analysis of the distributed deformation

is more difficult as many shear zones lack adequate vorticity

and/or finite strain indicators. Consequently, at present, this
method will be most useful for well-constrained defor-

mation zones.

Some possible complications are inherent in the

interpretation of results from the displacement diagram

method. The results of the method depend strongly on the

choice of transect orientations and lengths. Consequently,

the selection of appropriate, representative transects is

essential. The problem of the changing thickness of the

deforming zone requires that one transect be inscribed

parallel to the deformed system’s bulk shear plane. The

changing thickness of the zone can then be thoroughly

quantified, provided the system has a constant volume, by

analyzing the pure shear component of deformation.

Additionally, transect length must be considered care-

fully as it can dramatically affect displacement gradient

results. The simplest approach to determining appropriate

transect lengths is to measure displacements along the entire

width of a deformed zone, as we did for the San Andreas

Fault system example. In many cases, however, the full

extent of a deformed zone may be unknown. One approach

is to select clear boundaries for the analysis zone. For

example, consider a large deformed region dissected by

faults. Choosing some of these faults as arbitrary boundaries

and analyzing all deformation inside (and exclusive of)

these faults will provide an estimate of the deformation of

that relatively small region. Ideally, deformation in this

region might reasonably be considered representative of

deformation in the entire system and the results could be

extrapolated to the entire system.

The displacement diagram method assumes the simul-

taneous activation of the discrete and distributed components of

deformation. If discrete deformation, such as faulting, postdates

distributed deformation (or vice versa), a sequential approach to

retrodeformation is necessary. One complication arising from

simultaneous activity of discrete and distributed components is

that displacement on faults may be due to both straightforward

fault slip and to offset resulting from differential finite strain in

blocks adjacent to the fault (as in Fig. 6c).

The method also assumes that deformation of material is

steady-state. That is, the deformation could have stopped and

started in time, but when deformation was ongoing it was

accumulating with the same deformation path (ratio of

stretching rate to shear induced vorticity rate). The difficulties

with the assumption of steady-state deformation are somewhat

alleviated by considering bulk deformation paths (directly

analogous to the bulk vorticity of Passchier (1988)).
8. Conclusions

The strain in a deformed system, as accommodated by

both discrete and distributed components of deformation,

can be quantified using the displacement diagram method

(Wojtal, 1989). These components plot as two distinct

displacement gradients on a displacement diagram. The sum

of the two component displacement gradients yields a bulk
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displacement gradient. In the absence of simplifying

assumptions, four displacement diagrams are necessary to

describe a two-dimensional deformation and nine are

necessary to describe a three-dimensional deformation.

From a matrix composed of displacement gradients

calculated from these diagrams, a deformation matrix

describing the bulk deformation can be determined.

The method is very flexible insofar as one can analyze

deformations using finite information (finite strain, offsets),

displacement rates (geodetic measurements), and/or combi-

nations of the two. The method works best when there is a

significant amount of information about the boundary

conditions of deformation. Three major limitations to the

method are the ability to evaluate (1) the rotation (shear-

induced vorticity) for the distributed deformation, (2) the

original fault geometry and spacing, and (3) the relative

importance of offset on discrete surfaces due to differential

finite strain in the adjacent blocks vs. straightforward fault slip.

The displacement diagram method allows a robust

characterization of complex natural systems. The simplicity

of this method, in terms of both data collection and analysis,

and its scale independence makes it applicable to a wide

range of deformations.
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Appendix A. Calculation of finite strain from

displacement gradients

This appendix outlines the procedure for calculation of

some common measures finite strain from displacement

gradients. This procedure is the same regardless of the

number of dimensions being analyzed. For simplicity, we

present the procedures in two dimensions.

The reciprocal deformation matrix E describes the
transformation of the system from the deformed to the

undeformed state. E is calculated by adding the identity

matrix I to the matrix of reciprocal displacement gradients

H. These operations are as follows:

EZ ICH (A1a)

EZ
1 0

0 1

" #
C

vUx0 =vx0 vUx0 =vy0

vUy0 =vx0 vUy0 =vy0

" #
(A1b)

EZ
1CvUx0 =vx0 vUx0 =vy0

vUy0 =vx0 1CvUy0 =vy0

" #
(A1c)

The matrix inverse of E is the deformation matrix D,

which describes the transformation of the system from the

undeformed to the deformed state:

DZEK1 Z
1CvUx=vx vUx=vy

vUy=vx 1CvUy=vy

" #
(A2)

Many standard measures of finite strain can be calculated

from D using linear algebra procedures. For example, the

principal strain values of the strain ellipse (S1 and S2 are

the square roots of the eigenvalues of DDT, where DT is the

transpose of D:

DDT Z
1CvUx=vx vUx=vy

vUy=vx 1CvUy=vy

" #
1CvUx=vx vUy=vx

vUx=vy 1CvUy=vy

" #

(A3)

ð1þ vUx=vxÞðvUy=vxÞ þ ðvUx=vyÞð1þ vUy=vyÞ

ð1þ vUy=vyÞ2 þ ðvUy=vxÞ2

#
(A4)

S1 and S2 are the magnitudes of the principal strain axes

of the deformation imposed by D. The orientations of these

axes are described by the eigenvectors that correspond to

each eigenvalue.

All common measures of finite strain can be calculated

from D. Ramsay and Huber (1983, their Appendix B)

describe the straightforward procedures for calculation of

many of these measures.
Appendix B. Forward vs. reciprocal approaches

Considered from different perspectives, Fig. 2a and d

represents the same deformation. Fig. 2a represents the

deformation in a forward modeling sense, moving from the
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undeformed (dashed line) to the deformed (solid line) state.

This approach is occasionally called the Lagrangian

viewpoint (Ramsay and Huber, 1983, p. 283). In contrast,

Fig. 2d represents the reciprocal deformation. The approach

treats the deformed state as the reference configuration

(dashed line) that is altered to the undeformed state (solid

line). This is the Eulerian viewpoint (Ramsay and Huber,

1983, p. 283), which is required for the direct analysis of

naturally deformed rocks.

We refer to these two approaches, respectively, as the

forward and reciprocal (or inverse) models of deformation,

illustrated in Fig. 3. The forward or Lagrangian approach

assumes knowledge of the initial material position and

deformation matrix D (Fig. 3a). If one determines a

partitioning coefficient between the distributed and discrete

components of deformation (Fig. 3b), one can determine the

displacement gradients (Fig. 3c), components of discrete

and distributed deformation (Fig. 3d), and the resultant

deformation (Fig. 3e). This approach is essentially that of

Tikoff and Teyssier (1994), who modeled the partitioning of

bulk transpressional deformation into discrete and distrib-

uted components. The difficulties of this approach are two-

fold:
1.
 Non-uniqueness—Forward modeling creates predictions

that are comparable with geological observations, but

does not analyze the geological structures themselves.

Consequently, there is a problem with non-uniqueness.

Geological structures may be consistent with the

kinematic models, but may have actually formed by

completely different kinematics. This situation is poten-

tially avoided by using multiple lines of evidence.
2.
 Prescribed boundary conditions—The forward method

requires ad hoc methods of determining the exact

boundary conditions, such as the relative percentage of

distributed vs. discrete deformation (e.g. Tikoff and

Teyssier, 1994). However, geological observations can

help guide the prescription of these boundary conditions.

We note that these limitations occur for any type of

forward model, including both kinematic and dynamic

varieties.

In contrast, the reciprocal approach uses geological

observations as the basis for the deformation analysis (Fig.

3e). This method uses the observed geometry (Fig. 3f) to

determine the components of distributed and discrete

deformation (Fig. 3g). Displacement gradients (Fig. 3h)

are calculated from finite strain, or directly from measured

displacements, which allows one to calculate the reciprocal

strain (Fig. 3h).

This approach is potentially superior to the forward

model, because it is based on actual deformation rather than

conceptual models. Reciprocal models of deformation are

inherently kinematic, as these are the only direct obser-

vations that are obtained. The major impediment to this
approach is obtaining sufficiently accurate data to allow

quantitative analysis.
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